

 ATIS-1000082.v002

ATIS Standard on -

Technical Report on SHAKEN APIs for a Centralized Signing and

Signature Validation Server

As a leading technology and solutions development organization, the Alliance for Telecommunications Industry
Solutions (ATIS) brings together the top global ICT companies to advance the industry’s most pressing business
priorities. ATIS’ nearly 200 member companies are currently working to address the All-IP transition, 5G, network
functions virtualization, big data analytics, cloud services, device solutions, emergency services, M2M, cyber security,
network evolution, quality of service, billing support, operations, and much more. These priorities follow a fast-track
development lifecycle — from design and innovation through standards, specifications, requirements, business use
cases, software toolkits, open source solutions, and interoperability testing.

ATIS is accredited by the American National Standards Institute (ANSI). The organization is the North American
Organizational Partner for the 3rd Generation Partnership Project (3GPP), a founding Partner of the oneM2M global
initiative, a member of the International Telecommunication Union (ITU), as well as a member of the Inter-American
Telecommunication Commission (CITEL). For more information, visit www.atis.org.

Notice of Disclaimer & Limitation of Liability
The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret
its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to
products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS
TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE
OFMERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS. ATIS SHALL NOT BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY ATIS FOR THIS DOCUMENT, AND IN
NO EVENT SHALL ATIS BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. ATIS EXPRESSLY
ADVISES THAT ANY AND ALL USE OF NOR RELIANCE UPON THE INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE
USER.

NOTE - The user’s attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights.
By publication of this standard, no position is taken with respect to whether use of an invention covered by patent rights will be required, and if any
such use is required no position is taken regarding the validity of this claim or any patent rights in connection therewith. Please refer to
https://www.atis.org/policy/patent-assurances/ to determine if any statement has been filed by a patent holder indicating a willingness to grant a
license either without compensation or on reasonable and non-discriminatory terms and conditions to applicants desiring to obtain a license.

Published by

Alliance for Telecommunications Industry Solutions
1200 G Street, NW, Suite 500
Washington, DC 20005

Copyright © 2022 by Alliance for Telecommunications Industry Solutions
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the
publisher. For information contact ATIS at 202.628.6380. ATIS is online at < http://www.atis.org >.

ATIS-1000082.v002

ATIS Standard on

Technical Report on SHAKEN APIs for a Centralized Signing
and Signature Validation Server

Alliance for Telecommunications Industry Solutions

Approved April 2022

Abstract

This document provides a Technical Report on a SHAKEN APIs used to support a Centralized Signing and Signature Validation
Server. These APIs provide a means for multiple and/or disparate network elements to use an HTTP-based RESTful interface
to access SHAKEN Signing and Signature Validation servers. Initial SHAKEN API standards have been defined and are
expected to further progress in 3rd Generation Partnership Project (3GPP).

ATIS-1000082.v002

ii

Foreword

The Alliance for Telecommunication Industry Solutions (ATIS) serves the public through improved understanding between
providers, customers, and manufacturers. The Packet Technologies and Systems Committee (PTSC) develops and
recommends standards and technical reports related to services, architectures, and signaling, in addition to related subjects
under consideration in other North American and international standards bodies. PTSC coordinates and develops standards
and technical reports relevant to telecommunications networks in the U.S., reviews and prepares contributions on such matters
for submission to U.S. International Telecommunication Union Telecommunication Sector (ITU-T) and U.S. ITU
Radiocommunication Sector (ITU-R) Study Groups or other standards organizations, and reviews for acceptability or per contra
the positions of other countries in related standards development and takes or recommends appropriate actions.

The SIP Forum is an IP communications industry association that engages in numerous activities that promote and advance
SIP-based technology, such as the development of industry recommendations, the SIPit, SIPconnect-IT, and RTCWeb-it
interoperability testing events, special workshops, educational seminars, and general promotion of SIP in the industry. The SIP
Forum is also the producer of the annual SIP Network Operators Conference (SIPNOC), focused on the technical requirements
of the service provider community. One of the Forum's notable technical activities is the development of the SIPconnect
Technical Recommendation – a standards-based SIP trunking recommendation for direct IP peering and interoperability
between IP Private Branch Exchanges (PBXs) and SIP-based service provider networks. Other important Forum initiatives
include work in Video Relay Service (VRS) interoperability, security, Network-to-Network Interoperability (NNI), and SIP and
IPv6.

Suggestions for improvement of this document are welcome. They should be sent to the Alliance for Telecommunications
Industry Solutions, PTSC, 1200 G Street NW, Suite 500, Washington, DC 20005, and/or to the SIP Forum, 733 Turnpike Street,
Suite 192, North Andover, MA, 01845.

The mandatory requirements are designated by the word shall and recommendations by the word should. Where both a
mandatory requirement and a recommendation are specified for the same criterion, the recommendation represents a goal
currently identifiable as having distinct compatibility or performance advantages. The word may denotes an optional capability
that could augment the standard. The standard is fully functional without the incorporation of this optional capability.

The ATIS/SIP Forum IP-NNI Task Force under the ATIS Packet Technologies and Systems Committee (PTSC) and the
SIP Forum Technical Working Group (TWG) was responsible for the development of this document.

ATIS-1000082.v002

iii

Table of Contents

1 Introduction ... 1

2 Normative References ... 1

3 Definitions, Acronyms, & Abbreviations ... 1

3.1 Definitions ... 2
3.2 Acronyms & Abbreviations .. 2

4 Architecture ... 2

5 General API Requirements .. 4

5.1 Resource Structure ... 4
5.2 Special Request Header Requirements .. 5
5.3 Special Response Header Requirements ... 5

6 Data Types .. 5

6.1 Datatype: signingRequest ... 5
6.2 Datatype: origTelephoneNumber .. 6
6.3 Datatype: destTelephoneNumber ... 6
6.4 Datatype: signingResponse .. 6
6.5 Datatype: verificationRequest ... 7
6.6 Datatype: serviceException ... 7
6.7 Datatype: verificationResponse ... 7
6.8 Datatype: exception .. 8
6.9 Datatype: policyException ... 8
6.10 Datatype: requestError... 8

7 Exceptions ... 8

7.1 RESTful WebServices Exceptions .. 8
7.2 Service Exceptions ... 9
7.3 Policy Exceptions .. 9

8 API Interface .. 10

8.1 Signing API ... 10
8.1.1 Functional Behavior ... 10
8.1.2 Call Flow .. 11
8.1.3 Request (POST) .. 11
8.1.4 Response ... 12

8.2 Verification API ... 13
8.2.1 Functional Behavior ... 13
8.2.2 Call Flow .. 15
8.2.3 Request (POST) .. 15
8.2.4 Response ... 16

Table of Figures

Figure 4.1 – SHAKEN Reference Architecture ...3
Figure 4.2 – SHAKEN STI-AS/STI-VS with Centralized Signing & Signature Validation Server4

ATIS STANDARD ATIS-1000082.v002

ATIS Standard on –

Technical Report on SHAKEN API for a Centralized Signing and
Signature Validation Server

1

1 Introduction
This technical report defines a Representational State Transfer (REST)ful interface that can be used in the
Signature-based Handling of Asserted information using toKENs (SHAKEN) framework to sign and verify telephony
identity:

• Secure Telephone Identity Authentication Service (STI-AS) exposes an Applications Programming Interface
(API) to sign the provided Personal Assertion Token (PASSporT) which includes the SHAKEN extension as
defined in IETF RFC 8588 [Ref 5].

• Secure Telephone Identity Verification Service (STI-VS) exposes an API to verify the signed Secure
Telephone Identity (STI) according to procedures defined in IETF RFC 8224 [Ref 3].

The only algorithm currently supported by this API is ES256.

The data set defined in this document could be expanded to accommodate other data types as needed (e.g., other
PASSporT extensions that may need to be supported). Standards that include and expand the data set defined in
this document continue to be defined in 3rd Generation Partnership Project (3GPP).

2 Normative References
The following standards contain provisions which, through reference in this text, constitute provisions of this
Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this Standard are encouraged to investigate the possibility of applying the most
recent editions of the standards indicated below.

[Ref 1] IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace.1

[Ref 2] IETF RFC 7519, JSON Web Token (JWT).1

[Ref 3] IETF RFC 8224, Authenticated Identity Management in the Session Initiation Protocol (SIP).1

[Ref 4] IETF RFC 8225, PASSporT: Personal Assertion Token.1

[Ref 5] IETF RFC 8588, PASSporT Extension for SHAKEN.1

[Ref 6] ATIS-1000074, Signature-based Handling of Asserted Information using toKENs (SHAKEN).2

[Ref 7] ATIS-1000080, Signature-based Handling of Asserted information using toKENs (SHAKEN):
Governance Model and Certificate Management.2

3 Definitions, Acronyms, & Abbreviations
For a list of common communications terms and definitions, please visit the ATIS Telecom Glossary, which is
located at < http://www.atis.org/glossary >.

1 This document is available from the Internet Engineering Task Force (IETF). < http://www.ietf.org >
2 This document is available from the Alliance for Telecommunications Industry Solutions (ATIS) at < https://www.atis.org/ >.

ATIS-1000082.v002

2

3.1 Definitions
Caller identity: The originating phone number included in call signaling used to identify the caller for call screening
purposes. In some cases, this may be the Calling Line Identification or Public User Identity.

3.2 Acronyms & Abbreviations

API Applications Programming Interface

CSCF Call Session Control Function

PASSporT Personal Assertion Token

HTTP HyperText Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IMS IP Multimedia Subsystem

IP-NNI ATIS and SIP Forum IP Network-to-Network Joint Task Force

ISC IMS Service Control

ITU International Telecommunication Union

ITU-T U.S. International Telecommunication Union Telecommunication Sector

ITU-R U.S. ITU Radiocommunication Sector

JSON JavaScript Object Notation

NNI Network-to-Network Interoperability

PBXs IP Private Branch Exchanges

PTSC The Packet Technologies and Systems Committee

REST Representational State Transfer

SHAKEN Signature based Handling of Asserted information using toKENs

SIP Session Initiation Protocol

SIPNOC SIP Network Operators Conference

SKS Secure Key Store

STI Secure Telephone Identity

STI-AS Secure Telephone Identity Authentication Service

STI-CR Secure Telephone Identity Certificate Repository

STI-VS Secure Telephone Identity Verification Service

STIR Secure Telephone Identity Revisited

TWG Technical Working Group

UTC Coordinated Universal Time

UUID Universally Unique Identifier

VRS Video Relay Service

4 Architecture
Figure 4.1 depicts the SHAKEN reference architecture as described in ATIS-1000074 [Ref 6]. The reference
architecture is based on the 3GPP IP Multimedia Subsystem (IMS) architecture, whereby the STI-AS and STI-VS
are shown as IMS Application Servers, connecting to the IMS core Call Session Control Function (CSCF) via
Session Initiation Protocol (SIP) IMS Service Control (ISC) interfaces.

ATIS-1000082.v002

3

Figure 4.1 – SHAKEN Reference Architecture

As service providers incorporate SHAKEN into their infrastructure, they may need to deploy SHAKEN capabilities
into multiple networks; some networks may be IMS-based, and some may not. Furthermore, service providers may
determine that the STI-AS and/or STI-VS functions are better suited to be invoked at points other than the network
core, such as at the network edge. The use of SIP as the STI-AS/STI-VS access protocol may not be suitable when
initiating authentication and/or verification requests from locations other than an IMS core.

Because of the potential need for a service provider to initiate authentication and verification in multiple networks
and/or from different network elements within their infrastructure, it would be beneficial to share a centralized
authentication and verification service, calling upon these services from various points within a service provider’s
infrastructure.

This technical report describes a means of decomposing the STI-AS and STI-VS functions and exposing a
HyperText Transfer Protocol (HTTP)-based RESTful API that can be used to request SHAKEN authentication and
verification services. The API can be used by diverse network elements within a service provider’s network to make
SHAKEN authentication and verification requests of shared, centralized Signing and Signature Validation servers.

As shown in Figure 4.2, the overall STI-AS functionality is decomposed into two parts: a Signing server function
and an authenticator function. Likewise, the STI-VS is decomposed into a Signature Validation server function and
a verifier function. The HTTP-based API is used between the authenticator and Signing server functions and
between the verifier and Signature Validation server functions. Figure 4.2 depicts a combined Signing and Signature
Validation Server function, but this is optional.

The authenticator and verifier functions initiate the signing and validation requests via the API described in this
document. The authenticator and verifier functions may be integrated into other network elements or may be
developed as stand-alone functions. For example, a stand-alone authenticator function in an implementation of the
SHAKEN reference architecture would receive SIP INVITE messages from the CSCF and formulate and send an
HTTP signing request to the Signing server per the API described in this document. The Signing server performs
the signing/authentication functions and formulates an API response containing an Identity header that the
authenticator adds to the SIP INVITE message returned to the CSCF. Alternatively, the authenticator function could
be integrated into the CSCF, whereby the CSCF would directly support the new API.

ATIS-1000082.v002

4

Figure 4.2 – SHAKEN STI-AS/STI-VS with Centralized Signing & Signature Validation Server

5 General API Requirements
1. STI-AS and STI-VS have to expose RESTful web services implemented using HTTP and aligned with

the principles of RESTful API.
2. Only JavaScript Object Notation (JSON)-based data format is supported. APIs use “application/json”

content type.
3. All validations will be described below in the error handling sections for each API explicitly.
4. POST HTTP request is used for both APIs.
5. HTTP 1.1 protocol version has to be supported by server side.

5.1 Resource Structure
REST resources are defined with respect to a “server Root”:

 “serverRoot” = http://{hostname}:{port}/{optionalRoutingPath}

The resource structure is provided below:

‘apiVersion’ should be set to “1”.

Signing and Signature Validation Server

STI-AS STI-VS

SKS

Authenticator Verifier

HTTP
Signing

API

HTTP
Verification

API

ATIS-1000082.v002

5

5.2 Special Request Header Requirements
The following headers are expected to be sent in all HTTP requests:

Header Name Mandatory? Description

X-RequestID N The X-RequestID transaction ID should be included in order to make
possible the transaction traceability in case of troubleshooting and fault
analysis.
If received, it will not be validated explicitly by server. If not received, it will be
automatically generated by STI-AS/VS service on request receipt.
Received/Generated transaction ID will be returned back in the
corresponding HTTP response in “X-RequestID” header.

X-InstanceID N For auditing purposes, each component calling the API should identify itself
by sending its identity (e.g., VNFC name/UUID, VM name/UUID …) “n "X-
InstanceID" header.

Content-Type Y Determines the format of the request body.
Valid value is: “application/json”.
Requests with other types will be rejected with “415 Unsupported Media type”
HTTP status code.

Accept N If specified, has to contain “application/json” content type, otherwise HTTP
request will be rejected with “406 Not Acceptable” HTTP Status Code.
If not specified, will be default handled as “application/json”.

5.3 Special Response Header Requirements
The following headers are expected to be sent in all HTTP responses:

Header Name Mandatory? Description

X-RequestID Y Received/Generated X-RequestID transaction ID will be returned back in the
corresponding HTTP response.

Content-Type Y Determines the format of the response body.
Valid value is: “application/json”.

6 Data Types
6.1 Datatype: signingRequest

Key Name Key Value Type Required? Description

attest String

Allowed values:

 [“A”, “B”, “C”]

Y SHAKEN extension to PASSporT.

Indicator identifying the service provider that is vouching for the call as
well as clearly indicating what information the service provider is
attesting to.

SHAKEN spec requires “attest” key value be set to uppercase
characters “A”, “B”, or “C”.

dest destTelephoneNumber Y Represents the called party. Array containing one or more identities
of TNs.

ATIS-1000082.v002

6

Key Name Key Value Type Required? Description

iat Integer

Y “Issued At Claim”: Should be set to the date and time of issuance of
the PASSporT Token.

The time value should be in the Numeric Date format defined in RFC
7519 [Ref 2]: number of seconds elapsed since 00:00:00 Coordinated
Universal Time (UTC), Thursday, 1 January 1970 not including leap
seconds.

orig origTelephoneNumber

Y Represents the asserted identity of the originator of the personal
communications signaling.

origid String

Y The unique origination identifier (“origid”) is defined as part of
SHAKEN extension to PASSporT. This unique origination identifier
should be a globally unique string corresponding to a UUID ([Ref 1]).

6.2 Datatype: origTelephoneNumber

Field Type Required? Description

tn String

Allowed Characters :

[0-9],*,#,+, and

visual separators defined in

RFC 3966: “.”, “-“, “(“, “)”.

Y Telephone Number of Originating identity.

Server will remove all non-numeric characters if received except star
(*) and pound (#) characters.

Ex.: (+1) 235-555-1212 12355551212

6.3 Datatype: destTelephoneNumber

Field Type Required? Description

tn List of Strings

 [1 … unbounded]

Allowed Characters:

 [0-9],*,#,+, and

visual separators defined in

RFC 3966: “.”, “-“, “(“, “)”.

Y Telephone Number(s) of Destination identity.

List containing one or more identities of String type.

Server will remove all non-numeric characters if received except star
(*) and pound (#) characters.

Ex.: (+1) 235-555-1212 12355551212

6.4 Datatype: signingResponse

Key Name Key Value Type Required? Description

identity String

Cannot be NULL

Y Identity header value as defined in RFC 8224 [Ref 3] with
“identityDigest” in full format and mandatory “info” parameter. The “info”
header field parameter contains the public key URL of the certificate
used during STI signing.

ATIS-1000082.v002

7

6.5 Datatype: verificationRequest

Key Name Key Value Type Required? Description

identity String

Y Identity header value as defined in RFC 8224 [Ref 3] with
“identityDigest” in full format and mandatory “info”
parameter.

to destTelephoneNumber Y Represents the called party. Array containing one or more
identities of destination TNs. This is set to the value of the
“To:” header field parameter in the incoming SIP Invite.

time Integer

Y This is set based on the value of the Date header field
parameter in the incoming Invite.

The time value should be in the Numeric Date format
defined in RFC 7519 [Ref 2]: number of seconds elapsed
since 00:00:00 UTC, Thursday, 1 January 1970 not
including leap seconds.

from origTelephoneNumber

Y Represents the asserted identity of the originator of the
personal communications signaling.

This is set to the value of the “P-Asserted-Identity”, if
available, or “From” header field parameter in the incoming
Invite.

6.6 Datatype: serviceException

Field Type Required? Description

serviceException exception Y Service Exception.

6.7 Datatype: verificationResponse

Key Name Key Value Type Required? Description

reasoncode Integer

N Reason Code to be used in case of failed verification by STI-VS to
build SIP Reason header if required.

Currently possible values are defined as follows:

403,

428 (recommendation is to not use this Reason Code until a point
where all calls on the VoIP network are mandated to be signed),

436,

437,

438.

reasontext String N Reason Text to be used in case of failed verification by STI-VS to
build SIP Reason header if required.

Currently possible values are defined as follows:

403 - “Stale Date”

428 - “Use Identity Header” (recommendation is to not use this
Reason Text until a point where all calls on the VoIP network are
mandated to be signed)

436 – “Bad Identity Info”

437 – “Unsupported Credential”

438 – “Invalid Identity Header”

ATIS-1000082.v002

8

Key Name Key Value Type Required? Description

reasondesc String N Reason details description. Can be used for logging and
troubleshooting.

verstat String

{“TN-Validation-
Passed”,

“TN-Validation-Failed”,

“No-TN-Validation”}

Y Verification Status:

TN-Validation-Passed - The number passed the validation.

TN-Validation-Failed - The number failed the validation.

No-TN-Validation - No number validation was performed.

6.8 Datatype: exception

Field Type Required? Description

messageId string Yes Unique message identifier of the format ‘ABCnnnn’ where ‘ABC’ is either
‘SVC’ for Service Exceptions or ‘POL’ for Policy Exception. Exception
numbers may be in the range of 0001 to 9999 where 0001 to 2999 are
defined by the Open Mobile Alliance and 3000-9999 are available and
undefined.

text string Yes Message text, with replacement variables marked with %n, where n is an
index into the list of <variables> elements, starting at 1.

variables string No List of zero or more strings that represent the contents of the variables
used by the message text.

url string No Hyperlink to a detailed error resource e.g., an HTML page for browser
user agents. Currently will not be used.

6.9 Datatype: policyException

Field Type Required? Description

policyException exception Yes Policy Exception.

6.10 Datatype: requestError

Field Type Required? Description

requestError policyException or
serviceException

Yes Request Error Message.

7 Exceptions
7.1 RESTful WebServices Exceptions
RESTful services generate and send exceptions to clients in response to invocation errors. Exceptions send HTTP
status codes (specified later in this document for each operation). HTTP status codes may be followed by an
optional JSON exception structure (“requestError” datatype). Two types of exceptions may be defined: service
exceptions and policy exceptions.

ATIS-1000082.v002

9

7.2 Service Exceptions
When a service is not able to process a request, retrying the request with the same information will also result in a
failure, and the issue is not related to a service policy issue, then the service will issue a fault using the service
exception fault message. Examples of service exceptions include invalid input, lack of availability of a required
resource, or a processing error.

A service exception uses the letters 'SVC' at the beginning of the message identifier. ‘SVC’ service exceptions used
by SHAKEN API are defined below:

Exception

ID

Exception text HTTP
Status
Code

Exception

Variables

Error Description

SVC4000 Error: Missing request
body.

400 - MISSING_BODY

The API failed due to missing body.

SVC4001 Error: Missing mandatory
parameter ‘%1’.

400 %1 – parameter
name

MISSING_INFORMATION

The API failed due to missing mandatory
parameter.

SVC4002 Error: Requested
response body type ‘%1’
is not supported.

406 %1 – not supported
response body type

NOT_ACCEPTABLE_RESPONSE_BODY_
TYPE

A request was made of a resource for a non-
supported message body format.

SVC4003 Error: Requested resource
was not found.

404 - RESOURCE_NOT_FOUND

The server has not found anything matching
the Request-URI.

SVC4004 Error: Unsupported
request body type,
expected ‘%1’.

415 %1 – content type

(’application/json’)

UNSUPPORTED_REQUEST_BODY_TYPE

Received unsupported message body type.

SVC4005 Error: Invalid ‘%1’
parameter value: %2.

400 %1 – parameter
name

%2– short error
description

INVALID_PARAMETER_VALUE

Parameter’s value is invalid.

SVC4006 Error: Failed to parse
received message body:
%1.

400 %1-“invalid
message body
length
specified”/”invalid
JSON body”

FAILED_TO_PARSE_MSG_BODY

SVC4007 Error: Missing mandatory
Content-Length header

411 - MISSING_BODY_LENGTH

The Content-Length header was not
specified.

7.3 Policy Exceptions
When a service is not able to complete because the request fails to meet a policy criteria, then the service will issue
a fault using the policy exception fault message. To clarify how a policy exception differs from a service exception,
consider that all the input to an operation may be valid as meeting the required input for the operation (thus no
service exception), but using that input in the execution of the service may result in conditions that require the
service not to complete. Examples of policy exceptions include API violations, requests not permitted under a
governing service agreement, or input content not acceptable to the service provider.

A Policy Exception uses the letters 'POL' at the beginning of the message identifier. ‘POL’ policy exceptions used
by SHAKEN API are defined below:

ATIS-1000082.v002

10

Exception

ID

Exception text HTTP Status
Code

Exception

Variables

Error Description

POL4050 Error: Method not allowed 405 - The resource was
invoked with
unsupported
operation.

POL5000 Error: Internal Server Error. Please try
again later.

500 - The request failed
due to internal
error.

8 API Interface
8.1 Signing API

8.1.1 Functional Behavior
Used to create the PASSporT signature with private key certificate.

The Authenticator sends a signingRequest including the following to the SHAKEN Signing Service:

1. The “orig” parameter is populated using the PAI field if present, otherwise using the From header field in
the SIP Invite.

2. The “dest” parameter is populated using the To header field in the SIP Invite.

3. The “iat” parameter is populated using the “Date” header field in the SIP Invite. If there is no “Date” header
field in the SIP Invite, a Date header field is added to the SIP INVITE.

4. The “origid” parameter is determined as described in ATIS-1000074 for the “origid” field in the PASSporT.

5. The “attest” parameter is determined as described in ATIS-1000074 for the “attest” field in the PASSporT.

6. The signingRequest is then sent to the SHAKEN Signing Service.

The SHAKEN Signing Service performs the following steps:

1. Validate the incoming signing request parameters in terms of parameter’s type and format.

2. Validate the “iat” parameter value in terms of “freshness”: the request with “iat” value with time different
by more than one minute from the current time will be rejected.

3. Normalize to the canonical form the received telephony numbers if needed (remove visual separators and
leading “+”).

4. Build SHAKEN PASSport protected JWT header (with “ppt” SHAKEN extension).

5. Build SHAKEN PASSporT JWT payload by keeping lexicographic order and removing space and line
breaking characters.

6. Generate PASSporT signature with appropriate certificate private key.

7. Build Full Form of PASSporT.

8. Build SIP “Identity” header value by using identity digest from the previous step and add “info” parameter
with angle bracketed URI used to acquire the public key of certificate used during PASSporT signing.

9. If successfully signed, build and send “signingResponse” to the Authenticator, otherwise send error.

Upon receipt of the signingResponse, the Authenticator uses the “identity” parameter in the response to populate
the SIP Identity header field and forwards the request. If no identity parameter is received in a response, the
Authenticator forwards the request without adding a SIP Identity header field.

ATIS-1000082.v002

11

8.1.2 Call Flow

8.1.3 Request (POST)
The used resource is: http://{serverRoot}/stir/v1/signing.

Name Description

serverRoot Server base URL: hostname+port+base path
Hostname contains the Global FQDN of Signing Service.

8.1.3.1 Request Body

Parameter Data Type Required? Brief description

Signing Request signingRequest Yes Contains the JSON structure of the signing request
(PASSporT payload claims).

8.1.3.2 Request Sample

POST /stir/v1/signing HTTP/1.1
Host: stir.example.com
Accept: application/json
X-InstanceID : de305d54-75b4-431b-adb2-eb6b9e546014
X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
Content-Type: application/json
Content-Length: …
{
 "signingRequest”: {

ATIS-1000082.v002

12

 "attest": “A”,
 "orig”: {
 “tn”: “12155551212”
 },
 “dest”: {
 “tn”: [
 “12355551212”
]
 },
 "iat”: 1443208345,
 “origid”: “de305d54-75b4-431b-adb2-eb6b9e546014”
 }
}

8.1.4 Response

8.1.4.1 Response Body

Response body is returned as JSON object (Content-Type: application/json).

Parameter Data Type Required? Brief description

Signing Response signingResponse Yes Contains the JSON structure of the signing response
(SIP Identity header field value).

8.1.4.2 Response Sample (Success)

HTTP/1.1 200 OK
X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
Content-Type: application/json
Content-Length: …

{
 "signingResponse": {
 "identity": “eyJhbGciOiJFUzI1NiIsInR5cCI6InBhc3Nwb3J0IiwicHB0Ijoic2hha2VuIiwieDV1IjoiaHR0cDov
L2NlcnQtYXV0aC5wb2Muc3lzLmNvbWNhc3QubmV0L2V4YW1wbGUuY2VydCJ9eyJhdHRlc3QiOiJBIiwiZGVzdC
I6eyJ0biI6IisxMjE1NTU1MTIxMyJ9LCJpYXQiOiIxNDcxMzc1NDE4Iiwib3JpZyI6eyJ0biI64oCdKzEyMTU1NTUxMj
EyIn0sIm9yaWdpZCI6IjEyM2U0NTY3LWU4OWItMTJkMy1hNDU2LTQyNjY1NTQ0MDAwMCJ9._28kAwRWnheX
yA6nY4MvmK5JKHZH9hSYkWI4g75mnq9Tj2lW4WPm0PlvudoGaj7wM5XujZUTb_3MA4modoDtCA;info=<https:/
/cert.example2.net/example.cert>”
 }
}

8.1.4.3 Response Sample (Failure)

HTTP/1.1 400 Bad Request
X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
Content-Type: application/json
Content-Length: …
{
 “requestError”: {
 “serviceException”: {

ATIS-1000082.v002

13

 “messageId”: “SVC4001”
 “text”: “Error: Missing mandatory parameter ‘%1’”,
 “variables”: [“iat”]
 }
 }
}

8.1.4.4 HTTP Response Codes

Response
code

Service/Policy
Exception

Reason /Description

200 N/A Successful signing.

400 SVC4000 Missing JSON body in the request.

400 SVC4001 Missing mandatory parameter.

406 SVC4002 Not supported body type is specified in Accept HTTP header.

415 SVC4004 Received unsupported message body type in Content-Type HTTP header.

400 SVC4005 Invalid parameter value.

400 SVC4006 Failed to parse JSON body.

411 SVC4007 Missing mandatory Content-Length header.

405 POL4050 Method Not Allowed: Invalid HTTP method used (all methods except POST will
be rejected for the specific resource URL).

500 POL5000 The POST request failed due to internal signing server problem.

8.2 Verification API

8.2.1 Functional Behavior
The Verification API is used to verify the signature provided in the Identity header field and to determine that the
signing service credentials demonstrate authority over the call originating identity.

Upon receipt of a SIP INVITE containing a SIP Identity header field parameter, the Verifier builds a
verificationRequest as follows:

1. The “from” parameter is populated using the PAI field if present, otherwise using the From header field in
the SIP Invite.

2. The “to” parameter is populated with the To header field from the SIP Invite.

3. The “time” parameter value is populated with the RFC 7519 [Ref 2] encoded Date header field from the SIP
Invite.

4. The “identity” parameter value is populated using the Identity header field in the SIP Invite.

5. The Verifier then sends the HTTP Post to request verification.

Upon receipt of the verificationRequest, the SHAKEN Verification Service performs the following steps. Each step
is associated with the appropriate error case(s) specified in the section “Mapping of verification failure cases to the
returned SIP header parameters”. The error case numbers En per each step is specified in parentheses.

1. Validate the incoming verification request parameters in terms of parameter’s type and format (E1 and E2).

2. Validate the “time” parameter value in terms of “freshness”: a request with a “time” value which is different
by more than one minute from the current time will be rejected (E3).

3. Parse the “identity” parameter value:

ATIS-1000082.v002

14

a. full form of PASSporT is required by SHAKEN: “identity-digest” parameter of Identity header has to
be parsed to validate the full form format [three data portions delimited with dot (“.”)]. If the expected
format is not matched reject request on the Invalid PASSporT form (E4).

b. If “ppt” parameter is specified and its value is not “shaken” reject request (E5).

c. If “info” parameter is not specified reject request (E6).

d. If the URI specified in “info” parameter is not syntactically valid reject request (E7).

4. Decode “identity-digest” parameter value to extract from the first portion (PASSporT header) “ppt”, “typ”,
”alg” and “x5u” claims:

a. If one of the mentioned claims is missing -> reject request (E9).

b. If extracted “typ” value is not equal to “passport” reject request (E11).

c. If extracted “alg” value is not equal to “ES256” reject request (E12).

d. If extracted “x5u” value is not equal to the URI specified in the “info” parameter of Identity header
 reject request (E10).

e. If extracted “ppt” is not equal to “shaken” reject request (E13).

5. Decode “identity-digest” parameter value to extract from the second portion (PASSporT payload) “dest”,
“orig”, “attest”, “origid” and “iat” claims:

a. On missing mandatory claims reject request (E14).

b. Validate the extracted from payload “iat” claim value in terms of “freshness” relative to “time” value:
request with “expired” “iat” will be rejected reject request (E15).

c. On invalid “attest” claim reject request (E19).

d. Normalize to the canonical form the received in the “verificationRequest” “from” and “to” telephone
numbers (remove visual separators and leading “+”) and compare them with ones extracted from
the “orig” and “dest” claims of PASSporT payload. If they are not identical reject request (E16).

6. Dereference “info” parameter URI to a resource that contains the public key of the certificate used by signing
service to sign a request. If there is a failure to dereference the URI due to timeout or a non-existent
resource, the request is rejected (E8).

7. Validate the issuing CA. On the failure to authenticate the CA (for example not valid, no root CA) request
will be rejected (E17).

8. Validate the signature of “identity” digest parameter. On failure, reject the request (E18).

ATIS-1000082.v002

15

8.2.2 Call Flow

8.2.3 Request (POST)
The used resource is: http://{serverRoot}/stir/v1/verification.

Name Description

serverRoot Server base URL: hostname+port+base path.
Hostname contains the Global FQDN of Verification Service.

8.2.3.1 Request Body

Parameter Data Type Required? Brief description

Verification
Request

verificationRequest Yes Contains the JSON structure of the verification request
(PASSporT payload claims + identity header).

8.2.3.2 Request Sample

POST /stir/v1/verification HTTP/1.1
Host: stir.example.com
Accept: application/json
X-InstanceID : de305d54-75b4-431b-adb2-eb6b9e546014
X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
Content-Type: application/json
Content-Length: …
{
 “verificationRequest”: {
 “from”: {
 “tn”: “12155551212”
 },

ATIS-1000082.v002

16

 “to”: {
 “tn”: [
 “12355551212”
]
 },
 “time”: 1443208345,
 “identity”:
“eyJhbGciOiJFUzI1NiIsInR5cCI6InBhc3Nwb3J0IiwicHB0Ijoic2hha2VuIiwieDV1IjoiaHR0cDov
L2NlcnQtYXV0aC5wb2Muc3lzLmNvbWNhc3QubmV0L2V4YW1wbGUuY2VydCJ9eyJhdHRlc3QiOiJBIiwiZGVzdC
I6eyJ0biI6IisxMjE1NTU1MTIxMyJ9LCJpYXQiOiIxNDcxMzc1NDE4Iiwib3JpZyI6eyJ0biI64oCdKzEyMTU1NTUxMj
EyIn0sIm9yaWdpZCI6IjEyM2U0NTY3LWU4OWItMTJkMy1hNDU2LTQyNjY1NTQ0MDAwMCJ9._28kAwRWnheX
yA6nY4MvmK5JKHZH9hSYkWI4g75mnq9Tj2lW4WPm0PlvudoGaj7wM5XujZUTb_3MA4modoDtCA;info=<https:/
/cert.example2.net/example.cert>”
 }
}

8.2.4 Response

8.2.4.1 Response Body

Response body is returned as JSON object (Content-Type: application/son).

Parameter Data Type Required? Brief description

Verification Response verificationResponse Yes Contains the JSON structure of the verification
response.

8.2.4.2 Mapping of Verification Failure Cases to the Returned SIP Reason Header Field
Parameters

Error Case
Number

Error Case
(“reasondesc”)

HTTP Status
Code

“reasoncode” “reasontext” “verstat”

E1 Missing mandatory
parameters in the
verification request
(“from”, “to”, “time”,
“identity”).

400 with
service
exception

- - No-TN-Validation

E2 Received invalid
parameters
(invalid “from”/“to” tn
format, “time” value).

400 with
service
exception

- - No-TN-Validation

E3 Received ‘iat’ value is not
fresh.

200 403 Stale Date No-TN-Validation

E4 Identity header in compact
form instead of required
by SHAKEN spec full
form.

200 438 Invalid
Identity
Header

No-TN-Validation

E5 Identity header is received
with ‘ppt’ parameter value
that is not ‘shaken’.

200 438 Invalid
Identity
Header

No-TN-Validation

ATIS-1000082.v002

17

Error Case
Number

Error Case
(“reasondesc”)

HTTP Status
Code

“reasoncode” “reasontext” “verstat”

E6 Missing ‘info’ parameter in
the ‘identity’.

200 436 Bad identity
Info

No-TN-Validation

E7 Invalid ‘info’ URI. 200 436 Bad identity
Info

No-TN-Validation

E8 Failed to dereference ‘info’
URI.

200 436 Bad identity
Info

No-TN-Validation

E9 Missing ‘%1’ claim in the
PASSporT header.

%1 - “ppt”, ”typ”, ”alg”,
”x5u”

200 436 Bad identity
Info

No-TN-Validation

E10 ‘x5u’ from PASSporT
header doesn’t match the
‘info’ parameter of identity
header value.

200 436 Bad identity
Info

No-TN-Validation

E11 ‘typ’ from PASSporT
header is not ‘passport’.

200 437 Unsupported
credential

No-TN-Validation

E12 ‘alg‘ from PASSporT
header is not ‘ES256’.

200 437 Unsupported
credential

No-TN-Validation

E13 ‘ppt‘ from PASSporT
header is not ‘shaken’.

200 438 Invalid
Identity
Header

No-TN-Validation

E14 Missing ‘%1’ mandatory
claim in PASSporT
payload

%1 - “dest”, “orig”, “attest”,
“origid”, “iat”

200 438 Invalid
Identity
Header

No-TN-Validation

E15 ‘iat’ from PASSporT
payload is not fresh.

200 403 Stale Date No-TN-Validation

E16 ‘%1’ claim from PASSporT
payload doesn’t match the
received in the verification
request claim.

%1 - “orig”, “dest”

200 438 Invalid
Identity
Header

No-TN-Validation

E17 Failed to authenticate CA. 200 437 Unsupported
credential

TN-Validation-Failed

E18 Signature validation failed. 200 438 Invalid
Identity
Header

TN-Validation-Failed

E19 ‘attest’ claim in PASSporT
payload is not valid.

200 438 Invalid
Identity
Header

No-TN-Validation

8.2.4.3 Response Sample (Success + Successful Validation)

HTTP/1.1 200 OK
X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
Content-Type: application/json
Content-Length: …
{
 "verificationResponse": {
 “verstat”: “TN-Validation-Passed”

ATIS-1000082.v002

18

 }
}

8.2.4.4 Response Sample (Success + Failed Validation)

HTTP/1.1 200 OK
X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
Content-Type: application/json
Content-Length: …

{
 "verificationResponse": {
 “reasoncode”: 436,
 “reasontext”: “Bad Identity Info”,
 “reasondesc”: “Invalid ‘info’ URI”,
 “verstat”: “No-TN-Validation”
 }
}

8.2.4.5 Response Sample (Failure)

HTTP/1.1 400 Bad Request
X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
Content-Type: application/json
Content-Length: …
{
 “requestError”: {
 “serviceException”: {
 “messageId”: “SVC4001”
 “text”: “Error: Missing mandatory parameter ‘%1’”,
 “variables”: [“iat”]
 }
 }
}

8.2.4.6 HTTP Response Codes

Response
code

Service/Policy
Exception

Reason /Description

200 N/A Successful signing.

400 SVC4000 Missing JSON body in the request.

400 SVC4001 Missing mandatory parameter.

406 SVC4002 Not supported body type is specified in Accept HTTP header.

415 SVC4004 Received unsupported message body type in Content-Type HTTP header.

400 SVC4005 Invalid parameter value.

400 SVC4006 Failed to parse JSON body.

411 SVC4007 Missing mandatory Content-Length header.

405 POL4050 Method Not Allowed: Invalid HTTP method used (all methods except POST will
be rejected for the specific resource URL).

ATIS-1000082.v002

19

Response
code

Service/Policy
Exception

Reason /Description

500 POL5000 The POST request failed due to internal signing server problem.

