Introduction to Digital Signatures, PKI, and Certificates

Russ Housley
4 December 2018
Motivation

- STIR / SHAKEN depends upon digital signatures, Public Key Infrastructure (PKI), and certificates
- This session provides a basic introduction to these technologies
- Hopefully, this introduction will provide a firm foundation for the talks that come later in the day
Public Key Cryptography

- Every party has a key pair:
 - a *private key* and a *public key*
 - The private and public keys are mathematically related, but it is computationally infeasible to determine the private key from the public key
 - The private key is never shared; it must be well protected
 - The public key is freely distributed, typically in a certificate
Public Key 101

- An certification authority (CA) builds a certificate that includes:
 - Subject’s Name
 - Subject’s Public Key
 - Issuer’s Name
 - Validity Period
 - Other data to help manage certificates

- The issuer *digitally signs* the certificate
 - Any change to the content can be detected
Digitized vs. Digital Signature

- A *digitized signature* is a scanned image that can be pasted into a document
- A *digital signature* is a value that is created with the signer’s private key; it can be validated by anyone with the signer’s public key

```plaintext
Digitized Signature

Digital Signature
```

```plaintext
7A606F666BCC65F9720BC07F8
E52C7D25866B71DD640713242
64A75AA53F09D002200F14D7F
E21F0496B1F7E6B8F8A750DFA
BD34A3946F6297AB2730966BB
```
Hash Functions

- One way functions provide integrity
- Provide a single hash value with a uniform size for any length message
- Computationally infeasible to:
 - Derive the original message from the hash value
 - Create a second message with the same hash value the original message
Digital Signing

- A one-way hash function is used to create a hash of the data to be signed
- A digital signature is the output from a cryptographic transformation of the hash value using the signer’s *private* key
STIR Environment

- A PASSporT (Personal Assertion Token) is the protocol data object that is signed
- Digital Signature Algorithms:
 - ECDSA using P-256 with SHA-256
 - RSA with SHA-256
- STIR PASSporT is always signed with ECDSA
- STIR Certificate signed with ECDSA or RSA
Verification

- The STIR PASSporT and the digital signature value are sent to the recipient
- The recipient hashes the data and uses the sender’s public key to check the signature
 - Certificate holds the public key
 - Certificate can be cached to reduce size
- The verification will pass or fail
Digital Signature Verification

1. Received Message
2. Hash
3. Hash Value
4. Verify
5. Public Key
6. Received Signature Value
Certification Authority

- Generates and digitally signs the certificate
 - Binds Subject’s name to public key
- Revokes certificate if information changes
- Revokes certificate if private key is disclosed
- Support certificate hierarchies
Certificate Policy

- The rules and requirements for security, trust, and assurance
- A named set of rules that indicate whether a certificate meets the security requirements of a particular community or application
- Provides the foundation for audit
- In short: *What* the CA does
Certification Practice Statement

- A statement of the practices, which a CA employs in issuing certificates
- Compliance audit of CPS to CP is recognized as vehicle for trust in a CA
- In short: *How* the CA does its job
References

- RFC 5280: Certificates
- RFC 8226: STIR Certificate Profile
- RFC 3647: CP and CPS Framework
- RFC 8225: PASSporT
For More Information

Russ Housley
housley@vigilsec.com
+1 703 435 1775