An Introduction and Overview of the STIR / SHAKEN Framework

Martin Dolly
Lead Member of Technical Staff
Core Network & Gov’t/Regulatory Standards
and Director, SIP Forum
md3135@att.com
Spoofed Calls Versus Robo-Call

• **Spoofed calls**

 The *Truth in Caller ID Act* prohibits spoofing, or deliberately falsifying the telephone number (TN) and/or name relayed as the caller ID information to disguise the identity of the caller *for harmful or fraudulent purposes*. However, the law only applies to callers within the United States.

• **Robo-Calling**

 A robocall is a phone call that uses a computerized autodialer to deliver a pre-recorded message, as if from a robot. Robocalls are often associated with political and telemarketing phone campaigns, but can also be used for public-service or emergency announcements.
Robocalls & Spoofing is the #1 complaint to the FCC and FTC.

Robocalls & Spoofing is the #1 complaint to the CRTC in Canada

Robocalls & Spoofing is the #1 complaint to OFCOM and the UK ICO

There have been 6-8 different bills in Congress looking at this. Hearings you name it.

- FCC FTC CRTC [CA] OFCOM [UK] have held workshops. I wrote one of the reports.
- US Congress had endless hearings.

The PSTN is undergoing a radical transition

- With VoLTE IP based voice will be 75% of the market in 3 years in the US.

Existing PSTN Class 5 TDM/SS7 equipment is at or near End of Life [EOL] and cannot be modified.

All IP Interconnection now a reality US CA EU
Robocalling/ Spoofing Timeline

- **Mar 2013**: IETF Call to action by Prof. Schulzrinne, *FCC CTO*
- **Aug 2013**: IETF STIR Charter Approved
- **Aug 2015**: ATIS - SIP Forum SIP NNI - Task Re-focused on Robocalling/ Spoofing SHAKEN Framework Work begins
- **Oct 2015**: ATIS ex-parte on ATIS work program
- **Mar 2016**: ATIS Provides Work program Update to FCC
- **July 2016**: FCC Reaches out to carriers & Randall Stephenson, AT&T CEO, agrees to Chair FCC Robocalling Strike Force

2012
- FTC Workshop on Robocalling and Caller ID Spoofing

2013
- IETF BOF in DC on Approaches to CLID Spoofing

2014
- ATIS - SIP Forum Task Force Tracks IETF STIR
- FCC Workshop on Robocalling & Caller ID Spoofing

2015
- SIP NNI TF & IETF STIR “agree” on solution alignment
- ATIS Whitepaper on CLID Spoofing

2016
- ATIS Analysis on CLID Spoofing Mitigation Techniques
- Strike Force Kick-off Meeting

Dates
- **Oct 2012**
- **May 2013**
- **Jan 2014**
- **Sept 2015**
- **Fall 2015**
- **Apr 2016**
- **June 2016**
- **Aug 2016**
STIR & SHAKEN Work Program

IETF
- RFC 8224, Authenticated Identity Management in the Session Initiation Protocol (SIP)
- RFC 8225, PASSporT: Personal Assertion Token
- RFC 8226, Secure Telephone Identity Credentials: Certificates
- RFC 8443, Personal Assertion Token (PASSporT) Extension for Resource Priority Authorization
- PASSporT SHAKEN Extension (SHAKEN)
- PASSporT Extension for Diverted Calls
- PASSporT Extension for Rich Call Data
- TNAAuthList profile of ACME Authority Token

3GPP
- 3GPP TS 24.229, Technical Specification Group Core Network and Terminals; IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3
- 3GPP TS 29.163, Technical Specification Group Core Network and Terminals; Interworking between the IP Multimedia (IM) Core Network (CN) subsystem and Circuit Switched (CS) networks
- 3GPP TS 29.165, Technical Specification Group Core Network and Terminals; Inter-IMS Network to Network Interface (NNI)
- 3GPP TS 29.292, Technical Specification Group Core network and Terminals; Interworking between the IP Multimedia (IM) Core Network (CN) Subsystem (IMS) and MSC Server for IMS Centralized Services (ICS)

IPNNI
- IPNNI-2018-00038Rxxx, SHAKEN Roadmap
- ATIS-1000074, Signature-based Handling of Asserted information using toKENs (SHAKEN)
- IPNNI-2018-00088Rxxx, SHAKEN Errata
- ATIS-1000082, SHAKEN API for a Centralized Signing and Signature Validation Server
- ATIS-1000080, Governance Model
- ATIS-1000084, Technical Report on Operational and Management Considerations for SHAKEN STI Certification Authorities
- ATIS-1000081, Display Framework
- IPNNI-2018-00084Rxxx, ATIS Standard on Signature-based Handling of SIP RPH Assertion using Tokens
- IPNNI-2018-00036Rxxx, SHAKEN Support of "div" PASSporT Token
- IPNNI-2018-00018Rxxx, Signature-Based Handling of Asserted Information Using Tokens (SHAKEN): Proof-of-Possession of Telephone Numbers (TN-PoP)
- IPNNI-2017-00020Rxxx, Verification Token Use Cases (Living Document)
- IPNNI-2018-00048R000, Robo-Metrics
STIR/SHAKEN Limitations

- STIR can be used to validate SIP calls in real-time or to trace calls after the fact.
- GW may sign its identity for traceability purposes, without verifying calling number.
- Calls from outside SIP network cannot be verified.
 - Domestic SIP only
 - No support for TDM
Certificate Attestation Policy Indication

A. **Full Attestation**: The signing provider:

- is responsible for the origination of the call onto the IP based service provider voice network
- has a direct authenticated relationship with the customer and can identify the customer
- has established a verified association with the telephone number used for the call.

Note: The legitimacy of the telephone number(s) the originator of the call can use is subject to signer specific policy

B. **Partial Attestation**: The signing provider:

- is responsible for the origination of the call onto the telephone network
- has a direct authenticated relationship with the customer and can identify the customer
- has NOT established a verified association with the telephone number being used for the call

Note: Each customer will have a unique identifier, The unique identifier also provides a reliable mechanism to identify the customer for forensic analysis or legal action where appropriate.

C. **Gateway Attestation**: The signing provider:

- is the entry point of the call onto the telephone network
- has no relationship to the initiator of the call (e.g., international gateways).

Note: The signature will provide a unique identifier of the node. (The signer is not asserting anything other than “this is the point where the call entered my network”.)
The PASSporT “shaken” extension shall include both an attestation indicator ("attest"), as described in section 5.2.3 and an origination identifier ("origid") as described in section 5.2.4. The SHAKEN PASSporT token would have the form given in the example below:

Protected Header

```json
{
  "alg":"ES256",
  "typ":"passport",
  "ppt":"shaken",
  "x5u":"https://cert.example.org/passport.crt"
}
```

Payload

```json
{
  "attest":"A",
  "dest":{"tn":["12125551213 "]},
  "iat":1443208345,
  "orig":{"tn":"12155551212"},
  "origid":"123e4567-e89b-12d3-a456-426655440000"
}
```

In addition to attestation, the unique origination identifier ("origid") is defined as part of SHAKEN. This unique origination identifier should be a globally unique string corresponding to a Universally Unique Identifier (UUID) (RFC 4122). The origid will identify:

- Signing Carrier
- Carrier Customer/Access Carrier
- Entry Gateway
INVITE sip:+12155551212@tel.example1.net SIP/2.0
Via: SIP/2.0/UDP 10.36.78.177;branch=z9hG4bK-524287-1---
77ba17085d60f141;rport
Max-Forwards: 69
Contact: <sip:+12155551212@69.241.19.12>;tag=614bdb40
To: <sip:+12155551212@tel.example1.net>
From: "Alice"<sip:+12155551212@tel.example1.net>;tag=614bdb40
Call-ID: 79048YzkkND4NT11MzA00WFjOTFkMmFLOlhINT12OWQ1ZT
P-Asserted-Identity: "Alice"<sip:+12155551212@tel.example2.net>,<tel:+12155551212>
CSeq: 2 INVITE
Allow: SUBSCRIBE, NOTIFY, INVITE, ACK, CANCEL, BYE, REFER, INFO, MESSAGE, OPTIONS
Content-Type: application/sdp
Date: Tue, 16 Aug 2016 19:23:38 GMT
Identity: eyJhbGciOiJFUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdHRlc3QiOiJBIiwiZGVzdCI6eyJ0biI6IisxMjE1NTU1MTIxMyJ9LCJpYXQiOiIxNDcxMzc1NDE4Iiwib3JpZyI6eyJ0biI64oCdKzEyMTU1NTU1NTUxMjEyIiwicHV0IjoiaHR0cDovL2NlcnJvZ3JhcGxpbmFyeS5jb20uY3RvY3IuaXNzLmFydCIiLCJpZCI6IjEyM2U0NTY3LWU4OWItMTJkMy1hNDU2LTQyNjY1NTQ0MDAwMCJ9._28kAwRWnheXYa6nY4Mvmk5JKH2HZh9hSYkW1q5mng9Tj21W4WPm0P1vudoGaj7wM5Xuj2UTb_3MA4modoDtCA
;info=<http://cert.example2.net/example.cert>;alg=ES256
Content-Length: 153
v=0
o=- 13103070023943130 1 IN IP4 10.36.78.177
c=IN IP4 10.36.78.177
t=0 0
m=audio 54242 RTP/AVP 0
a=sendrecv

SIP Identity Header Example for SHAKEN
SHAKEN reference architecture

- **Certificate provisioning service**
 - HTTPS

- **TN Certificate Repository**
 - TN-CR

- **Authentication Service Function**
 - STI-AS
 - SIP

- **Verification Service Function**
 - STI-VS
 - SIP

- **Secure Key Store**
 - SKS

- **Call Validation Treatment**
 - CVT

- **Secure Telephone Identity** (STI)
 - Secure Telephone Identity

- **Service Provider A**
 - Originating/Authorization
 - SIP UA
 - RTP

- **Service Provider B**
 - Terminating/Verification
 - IBCF/TrGW
 - SIP
 - RTP

- **CSCF**
 - SIP

- **Verification Service Function**
 - SIP
STIR/SHAKEN Basic Call Flow
Centralized Signing and Signature Validation Server

STI-AS

STI-VS

SKS

Signing and Signature Validation Server

Authentication

Verifier

Https Signing API

Https Verification API
SHAKEN API for a Centralized Signing and Signature Validation Server

1. Request Sample
1. POST /stir/v1/signing HTTP/1.1
2. Host: stir.att.com
3. Accept : application/json
4. X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
5. Content-Type: application/json
6. Content-Length: ...

{
 "signingRequest": {
 "attest": "A",
 "orig": {
 "tn": "12155551212"
 },
 "dest": {
 "tn": [
 "12355551212"
]
 },
 "iat": 1443208345,
 "origid": "de305d4-75b4-431b-adb2-e6b9e546014"
 }
}

1. Response Sample (Success)
1. HTTP/1.1 200 Ok
2. X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
3. Content-Type: application/json
4. Content-Length: ...

{
 "signingResponse": {
 "identity": "eyJhbGciOiJFUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE2MjA4NTAyMCwiZGVudGl0eSI6eyJ0biI6IiIsIm9yaWdpZCI6IjEyM2U0NTY3LWU4OWItMTJkMy1hNDU2LTQyNjYiLCJ1c2VyIjoiMjMxIiwiaWF0IjoxODAwNTc4MjEzLCJleHAiOjE2MjA4NTAyMCwiaHR0cHM6Ly9iYWtlLmF1dGguY29tL2FkbWluL2NhY2hlcy5ib3ktcGFydGlyLmNvbS8=
 }
}

SHAKEN API for a Centralized Signing and Signature Validation Server
1. Request Sample

1. POST /stir/v1/verification HTTP/1.1
2. Host: stir.att.com
3. Accept: application/json
4. X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
5. Content-Type: application/json
6. Content-Length: ...

{ "verificationRequest": {
 "from": {
 "tn": "12155551212"
 },
 "to": {
 "tn": ["12355551212"]
 },
 "time": 1443208345,
 "identity": "eyJhbGciOiJFUzI1NiIsInR5cCI6IkpXVCJ9.fgIw6k28kAwRWhneXYA6nY4MvmK5JKHZH9hSyKWi475m9mq9Tj2Iw4WPm0PlvudoGaj7wM5XujZUTb_3MA4modoDTCA.info=https://cert.example2.net/example.cert;alg=es256"
}}

1. Response Sample (Success + Successful Validation)

1. HTTP/1.1 200 Ok
2. X-RequestID: AA97B177-9383-4934-8543-0F91A7A02836
3. Content-Type: application/json
4. Content-Length: ...

{ "verificationResponse": {
 "verstat": "TN-Validation-Passed"
}}
Note: Interface between VF and Data Analytics Server is outside Industry Standards and may not be available in initial deployments & Some Analytics may be performed in the network element that performs the VF.
Verstat

- TN Validation Passed
- TN Validation Failed
- No TN Validation
- Future: same values above for CNAM

Security Considerations

- The Verification Function must drop a verstat tel URI parameter received in an INVITE
- If the terminating UE does not support the "verstat" parameter value, it must discard the parameter
- The terminating UE will act on the "verstat" parameter value, if the 200 (OK) response to the UE REGISTER includes a Feature-Caps header field, as specified in RFC 6809° [190], with a "+g.3gpp.verstat" header field parameter
Thank you.