All for one and one for all - Trusted Identity Security

Chris Wendt - Director Technical R&D, IP Communications, Comcast
Co-Chair IP-NNI Joint Task Force and Co-Chair STI-GA Technical Committee
STIR/SHAKEN - Party is in full swing

- RSVPs have been received
- Guest’s have (mostly) arrived
- Drinks and hors d’oeuvres are ready
- The tokens are hot and ready to be consumed 😋
ALL YOU NEED IS MOTIVATION

FALSE: YOU NEED FEAR AND AN APPROACHING DEADLINE
STIR/SHAKEN - All dressed up and ready to go

Now what?
Are we dancing? or still figuring things out?

By Wilhelm Gause - Historisches Museum der Stadt Wien [1], Public Domain
We have the framework in place

The dresses, the shoes

We need to learn the ART

STYLE
Move from fundamentals to mastery

Move from fundamentals to mastery

Going through the motions

vs

A master performance
Identity security is not only about crypto/digital signatures

Largely about the TRUTH and TRUST associated with the information/identity being brought into the system
Security is only as strong as the weakest link
The **weakest link** for STIR/SHAKEN is not necessarily related to signatures or credentials or certificates. It’s related to the **accuracy** and **implicit trust** that consumers of the telephone network depend on.
Securing identity in the telephone network has an inherent advantage over Web PKI, for example.

Participants play within a regulated system where STI-GA/PA governed certificates are issued to a limited number of well-known and approved entities with incentive to stay in that eco-system.
All for one and one for all
Trusted identity needs to be end-to-end

- **Retail service**: calling device authentication relationship is direct
 - OSP directly authenticates device used to place the call in their network

- **Everything else**: calling device authentication relationship is indirect
 - “End-to-end” starts with authenticating the caller and carrying that through end-to-end

- Fundamental requirement we have is:

Non-repudiation: the assurance that the owner of a signature key pair that was capable of generating an existing signature corresponding to certain data cannot convincingly deny having signed the data.
Telephone Service is an Application

• Not just routing packets to the right place

• The sooner we recognize this the easier we will get to **TRUST**

• Authentication inherently begins at the **device** that initiates a call and is carried throughout the transaction end-to-end

• SIP is hop-by-hop, a bit different than client/server based protocols

• But that is why it’s even MORE important to enforce end-to-end

By Richard Knötel - http://warfare.tk/Ottoman/Ottoman.htm, Public Domain
Authentication/Trust

Traditional Web Authentication (HTTPS)

client → server

SIP/STIR Model

client 1 → middle box → middle box → client 2

Trust in hop-by-hop model MUST traverse middle boxes
Authentication/Trust End-to-End

Traditional Web Authentication (HTTPS)

Client 1 > Middle Box > Server

SIP/STIR Model

Client 1 > Middle Box > Client 2

Trust in hop-by-hop model MUST traverse middle boxes from where the call was authenticated
Traditional Web Authentication (HTTPS)

client -> router -> router -> router -> server

Internet/IP model is hop-by-hop but we never think about that at application layer
Authentication/Trust

Retail Model with SHAKEN attestation model

Authenticated Relationship

client
Retail Device

middle box

OSP

middle box

server

Enterprise Model with SHAKEN attestation model

Authenticated Relationship

client
SIP client

middle box

pbx

middle box

OSP

middle box

middle box

Reseller/CPaaS

server
Authentication/Trust End-to-End

client — router — router — router — server

🚫 — 📘 — 🎉
Authentication/Trust End-to-End

client → router → router → router → server

[Certificate]

[Checkmark]
Enterprise Model with SHAKEN attestation model

Enterprise Model with TN Cert model
Distributed Trust

- The telephone network just like IP networks or globally the internet is a **distributed model**.

- Network to network interconnection / hop-by-hop relationships

- Trust must be **distributed** and **cooperative**

- Authentication is about trust that you are who you say you are because you have been vetted (Extended validation :: CATA model)

- It’s real-time and session based and must be independent of how a call is routed and who the callee is.
Trust in the eco-system

- Trust is key

- Again, we have fundamental **technology/crypto in place**

- It’s about maintaining an eco-system of
 - **accountability**
 - **incentives**

- where the bar is maintained high, back-stop of STI-GA policy and regulatory (and if necessary criminal) enforcement

- so if a signature/identity is validated

- there is a level of inherent trust, most importantly to end-users, because the eco-system is healthy
How do we enforce trust?

- Start with the authenticated device relationship, the initiation of a call

- **Retail**: Vetted customers and their use of assigned telephone numbers
 - Rinse, Repeat (we got this)

- **Enterprise**:
 - Vet customers
 - Manage use of telephone numbers
 - Directly assigned
 - Bring your own numbers (i.e. spoofed)
 - Sign call with TN cert
 - Downstream consumption OSP, TSP, end-user can trust with confidence
How do we enforce trust end-to-end
How do we enforce trust end-to-end

Use TN based delegate certificates
How do we enforce trust end-to-end

Use TN based delegate certificates

Questions?
Enforce trust end-to-end

Customer provisioning / Vetted Info

CUPID
Customer Profile ID Database

client 1 → service 1
client 2 → service 2

wholesale SBC edge

tgrp 1: cust 1

tgrp 2: cust 2

SIP Core

STI-VS
SHAKEN STI-AS

core network

service network
Enforce trust end-to-end

- Populated via billing and provisioning processes
- Contains TN or trunk group level information
- Contains Vetted information triggering RCD
- Supplements internal service information/provisioning
- Important: only contains vetted/provisioned info we sign for (our direct customers)
- We want to receive authenticated calls through wholesale/transit relationships
Enforce trust end-to-end - two stage approach

Stage 1 Authentication

Stage 2 Authentication

Customer provisioning / Vetted Info

CUPID
Customer Profile ID Database

client 1 → service 1

client 2 → service 1

service 1 → wholesale SBC edge

cust 1 → tgrp 1 → wholesale SBC edge

cust 2 → tgrp 2 → wholesale SBC edge

wholesale SBC edge → service network

SIP Core

STI-VS

SHAKEN

STI-AS

core network

Stage 2 Authentication
Enforce trust end-to-end - two stage approach

• **Stage 1 Authentication**
 - Signing with TN cert or trunk group cert at point of service authentication or next hop
 - If vetted info is available, sign with TN cert/RCD
 - Apply service policies based on vetted customer data
 - If service association is available sign with trunk group cert

• **Stage 2 Authentication**
 - Calls are routed through network normally landing on SIP core for routing to NNI
 - Calls signed with TN cert are signed with SHAKEN attest = “A”
 - Calls signed with trunk group cert are signed based on CUPID assigned policy
 - Calls not signed receive “C” attestation
Enforce trust end-to-end - two stage approach

• Why two stages?
 • As explained, maintains a key property of trust, **signing the call at the point of service authentication**
 • Associates subscriber identity(s) and potential RCD info at the point where it’s **naturally provisioned** (as part of a service, not routing function)
 • **Separation of authentication and SHAKEN attestation** allows for independence of network routing, once identity header is added, SIP routing doesn’t matter until it exits SP network
 • No matter where 1st stage authentication is performed, or not performed, 2nd stage simply inspects the invite and determines attestation level based on **simple rules/policy**
 • Trust is **initiated/maintained/non-existant** end-to-end within the network
How to we enforce trust? Bigger picture

- We can view the service provider network as a **microcosm** of the larger telephone network.
- We go back to hop-by-hop nature of network, trust must be maintained
 - end-to-end
 - SP-to-SP
 - caller-to-callee
- This can obviously be extended to
 - country-to-country
 - jurisdiction-to-jurisdiction
In order to maintain end-to-end trust, it all starts with **not certificates, not tokens, not STIR/SHAKEN**, but

- **Vetting**, both customer and associated identity(s) and RCD

- Proper management of customer provisioning, **ideally at the source of truth**, the service systems that support the customer
What’s next?

- **Spoofing** really needs to **go away**
- **We now have the tools** to accomplish what spoofing has enabled in the past in a **truthful/trusted way**
- This is a **fundamental loophole** scammers take advantage of, we need to remove that ability
- Converging on **implementing end-to-end trust** is key
- **Spoofing** is simply not a legitimate part of any secure application
- In order to get there...
All for one and one for all