
webRTC and Related Technologies
An Introduction – Q1 2013

2 2

Web Real Time Communications - Outline

• Motivation

• Applicable Technologies
– HTML5

– webRTC
What it is

What is it not

Session Management Alternatives

Standards Perspective

Technology Perspective

• What are the industry implications ?

3 3

The Quick tour

Why

Basic Web Real Web Broker So What

PeerConnect

-ion API

Get User

Media

Offer Answer

JSEP

SDP

STUN HTML5 webSockets

TURN

ICE

SDP (2) ICE-Lite

DTLS-SRTP

RTP Muxing

RTCP

Muxing

AVP/AVPF

Data Channel

Codecs

SDP(3)

OTT

Implications

Carrier

Implications

RCS Apps

OTT Apps

Standards

$$$

4 4

Assertion:

• The Internet Service Provider industry
wants to dominate Real Time
Communications

• is the technology that
enables that goal

– Embedded in “every” browser

– Fully capable of high quality secure multimedia
communication media streams

• Aggressive Strategies
– Full Voice, Video and Data

– Simple to build-to APIs

– Composite application user experiences

– Diverse and specialized user experiences

– Retain the Carrier for devices, pipes, and taking
regulatory heat

7.3 Billion people by 2016

2 Billion Internet Connected People

Multiple Connected Devices per Consumer

5 5

Say you are “the internet” and you want to make a call…

• Embed the media capabilities in

everybody’s browser

• Provide Point to Point Media

Exchange

• Deliver the user experience as

a web page

• Use internet addressing

schemes

• Use a session model that suits

the controlling user experience

• Don’t make it the app, make it

part of the App

OTT

alice bob

Browser

JavaScript

Web

Server

(UX)

Browser

JavaScript

Web

Server

(UX)

alice@internet.com bob@internet.com

6 6

Browser Real Time Communication Standards

 Problem space 1 (the browser):

– Open standards for web browser

APIs to access the device

hardware and enable real time

communications
W3C WebRTC initiative

 Problem space 2

(communication):

– Open standards for

communication establishment

between web browser end points
IETF RTCweb initiative

Web

Server

Problem space 1

Problem

Space 2

All possible end points

Media Signalling

Interworking
Standards development

being closely match by rapid

industry experimentation.

http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/

7 7

Browser Real Time Communication Standards

 Problem space 1 (the browser):

– Open standards for web browser

APIs to access the device

hardware and enable real time

communications
W3C WebRTC initiative

 Problem space 2

(communication):

– Open standards for

communication establishment

between web browser end points
IETF RTCweb initiative

Web

Server

Problem space 1

Problem

Space 2

All possible end points

Media Signalling

Interworking
Bundled together these

initiatives are commonly

called

http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/

8 8

Say you are “the internet” and you want to make a call…

• webRTC technologies are
embedded in the Browser

• Primary job is Media Delivery

• Media Delivery is built on UDP
and RTP

• UDP
– Efficient streaming with real-time

efficiency

– Limitations with respect to retrans-
mission, stream preservation etc.

• RTP
– Encapsulate the stream in

descriptive information

– Used primarily for streaming media

– Provides sequencing,
synchronization and loss detection

– Provides no reliability, no packet
repair, no retransmission.

OTT

alice bob

Browser

JavaScript

Web

Server

(UX)

Browser

JavaScript

Web

Server

(UX)

alice@internet.com bob@internet.com

10 10

Real-time Transport Protocol (RTP)
• Used for Audio and Video in IP Networks

• Augmented with RTCP (Control Protocol) for monitoring and control

• Handles sequencing and loss detection, but not retransmission

• Enables multiple sources to be synchronized into a single stream

• The guts of the protocol header:
– Header info - version (V): 2 bits, padding (P): pad to fixed block size for encryption, extension (X)

– CSRC count (CC): 4 bits: The CSRC count contains the number of CSRC identifiers that follow the fixed header.

– payload type (PT): 7 bits: This field identifies the format (e.g. encoding) of the RTP payload and determines its interpretation by the

application.

– sequence number: 16 bits: The sequence number increments by one for each RTP data packet sent, and may be used by the receiver to

detect packet loss and to restore packet sequence. The initial value of the sequence number is random

– timestamp: 32 bits The timestamp reflects the sampling instant of the first octet in the RTP data packet. Can be used in sorting out

synchronization of multiple streams, or in the resolution of frame timing in some Video Coding schemes.

– SSRC: 32 bits The SSRC field uniquely identifies the synchronization source.

– CSRC list: 0 to 15 items, 32 bits each: The CSRC list identifies the contributing sources for the payload contained in this packet. The

number of identifiers is given by the CC field. If there are more than 15 contributing sources, only 15 may be identified. CSRC identifiers are

inserted by mixers, using the SSRC identifiers of contributing sources.

11 11

• Mechanism needed to control

the Browser RTC actions

– JavaScript is being chosen

– A Uniform API for all browsers

• Addressed by W3C (mostly)

• Makes the RTC completely

subservient to the Web-

delivered application

• Allows for Page-by-page, user-

by-user, situation-by-situation,

call-by-call flexibility

Controlling the Browser - JavaScript

OTT

alice bob

Browser

JavaScript

Browser

JavaScript

Web

Server

(UX)

Web

Server

(UX)

alice@internet.com bob@internet.com

• Mechanism needed to control

the Browser RTC actions

– JavaScript is being chosen

– A Uniform API for all browsers

• Addressed by W3C (mostly)

• Makes the RTC completely

subservient to the Web-

delivered application

• Allows for Page-by-page, user-

by-user, situation-by-situation,

call-by-call flexibility

• Users better be using the same

application

Web

Server

(UX)

12 12

Controlling the Browser - JavaScript

Three fundamentals control end-to-end Real Time Communications

• Describing the Media: Arrangement of Tracks, Channels etc.

• The Get User Media API

• The Peer Connection API

A standardized API is being been developed – All browsers to implement

Browser

JavaScript

Microphone

Front Camera

Back Camera

Screen Share

Speakers

API

The other end

User Media Peer Connection

13 13

Rt Speaker

Lt Speaker

Display

Display

Describing the Media

• The media description is passed across the API, to allow the JavaScript to

create the media experience that it wants.

• The MediaStream Object:
– getAudioTracks, getVideoTracks, getTrackById

– addTrack, removeTrack, attribute boolean ended;

– EventHandler(s) onended, onaddtrack, onremovetrack;

• Gives JavaScript applications fine-grained application control

Retrieve tracks in a stream

Manage tracks in a stream

Discover important events

Left Mic

Right Mic

Front Camera

Back Camera

Screen Share

Sources

Lt Audio

Rt Audio

 Speaker Vid.

Room Video

Appl’n Vid.

Local
Streams

Presenter

Present-

ation

Transcript

Remote
Streams

Tracks

Left A

Right A

Speaker V

Right A

Preso V

Right A

Presenter

Present-

ation

Transcript

Remote
Streams

14 14

Getting the User Media (Camera, Microphone…)

• Before the web application can access the

user's media input devices it must

let getUserMedia() create

a LocalMediaStream .

• Once the application is done using media

sources, it may revoke its own access by

calling stop() on the LocalMediaStream

• On a call to getUserMedia() the browser

must confirm with the user that the

cameras and microphones can be used in

the context of the browsed media.

• The outcome is the Local instance of the

MediaStream object

Microphone

Front Camera

Back Camera

Screen Share

Speakers

User Media

15 15

Getting at the Other end of the Pipe

• The RTCPeerConnection API handles the Connection between two peers

• Manages the Local and Remote MediaStream descriptions
– createOffer

– createAnswer

– setLocalDescription

readonly attribute RTCSessionDescription localDescription;

– setRemoteDescription

readonly attribute RTCSessionDescription

readonly attribute RTCPeerState

– addStream

– removeStream

– close

• Handles NAT Traversal information (more on that later)
– updateIce

– addIceCandidate

readonly attributes RTCIceState, iceState, MediaStreamArray, MediaStreamArray remoteStreams;

• Supports Raw Data from peer to peer
– createDataChannel

attribute EventHandler - ondatachannel;

• Manages Events
– attribute EventHandler - onnegotationneeded, onicecandidate, onopen, onstatechange, onaddstream,

onremovestream, onicechange;

Later in section on JSEP
SDP Creation for Local resources

SDP Creation for far end

resources

Manages tracks in a stream

Allows JavaScript action on

events on the Local and

Remote Streams

Manages tracks in a stream

16 16

Offer Answer Model
• webRTC Requires the use of the

Offer Answer Model

– Analogous to a Business Card

exchange

– Hey ! Send your media over here !

– OK, and you send yours over here

– Alright ! I can do that.

– We’re communicating !

• JSEP enforces the law

– IETF Specification that describes the

use of offer answer

– JSEP covers the Media Session

Description

– JSEP does not govern how the offer

and answer are used by the application

to create a session

OTT

alice bob

17 17

JSEP (JavaScript Session Establishment Protocol)
• Provides the Description and Operation of the JavaScript APIs that will govern

the Session Characteristics

• Establishes the use of Offer / Answer

• Establishes the use of the Session Description Protocol (SDP) to describe the

offer and answer

• The offer

– CreateOffer in the RTCPeerConnection element of the Javascript API

– Builds an offer SDP Containing supported configurations for the session:

descriptions of the local MediaStreams attached to this PeerConnection,

the codec/RTP/RTCP options supported by this implementation,

any ICE candidates that have been gathered by the ICE Agent

Constraint and control information

• The answer
– CreateAnswer in the RTCPeerConnection element of the Javascript API

– Builds an answer SDP Containing supported session configurations:

descriptions of the local MediaStreams attached to this PeerConnection,

the codec/RTP/RTCP options supported by this implementation,

any ICE candidates that have been gathered by the ICE Agent

Constraint and control

– Constrained by the Offer – a subset.

From the Draft: However,

the actual mechanism by

which these offers and

answers are communicated

to the remote side, including

addressing, retransmission,

forking, and glare handling,

is left entirely up to the

application.

18 18

Implications of JSEP Adoption
• Media Capability control is hardwired in the Browser, evolving with

Hardware and Browser releases

• JSEP defines that the interaction with the Browser is about Media

capabilities only

• The Session State Machine is implemented in JavaScript, and

determined by the Web Server that downloads the JavaScript

• Each application (or each instance of an application) can create it’s

own user experience and session state machine.

Offer

Answer

 Each Application creates its own
user experience

 Supports web-page converged
applications where
communications is just an
integrated component.

 No standard at the UX , App and
session Layers

Browser

JavaScript

Browser

JavaScript

Web

Server

(UX)

alice@internet.com bob@internet.com

19 19

Session Description Protocol (for completeness)

• C-lines (Connection)
– <network type> <address type>

<connection address>

– Can show up in the Media section and
override session level c=

• M-lines (Media)
– <media> <port> <transport> <fmt list>

– fmt is Typically the RTP media payload
type(s)

– Applies to lines following the m=

• A-lines (attribute)
– rtpmap:<payload type> <encoding

name>/<clock rate>[/<encoding
parameters>]

– Multiple attributes are allowed per m= to
cover multiple payload types

• v= is a version number

• o= is an “owner”

• s= is session name

• t= is a session time

v=0

o=alice 2890844526 2890844526 IN IP4

host.anywhere.com

c=IN IP4 host.anywhere.com

t=0 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

m=video 51372 RTP/AVP 31 32

a=rtpmap:31 H261/90000

a=rtpmap:32 MPV/90000

OTT

alice bob

Answer

SDP



Offer

SDP



20 20

Creating a Session – not always like a telecom network

1. Distributed App Servers and

some global addressing

resolution

2. All communicators share an

app server (call server?)

– No geographic ties

3. Browser logic and some

global addressing resolution

Browser

JavaScript

Web Server

and Appl Bus

logic

webRTC

compliant

media

Session

Signaling

Browser

JavaScript

Web

Server

(UX)

webRTC

compliant

media

Browser

JavaScript

Application Bus logic – All parties use the

same App Server

webRTC

compliant

media

Session

Signaling

2.

1. 3.

The models are:

• Uniform and self consistent

• Functional within a community

• NOT Interoperable, either between

models, or between instances of the same

model

21 21

Driving the User Experience: HTML5

HTML 5 changes the rules:

It permits the deployment of single “App-like” solutions to

multiple devices and device types. No more developing,

deploying and managing separate applications on a

device-by-device basis.

source: focus.com

http://media.focus.com/images/uploaded/fyi/wtf-html5-infographic/HTML5__.jpg

22 22

HTML5: Superior User Experience

• Delivers an “App-like” experience

– Native look and feel, widgets, window layouts

– Installable and Manageable Web Apps

– Touch and swipe events, notifications, etc.

– Browser chrome control and hiding

– Browser breakout

• Removes technology limitations in current solutions

– Video embedding

– RTC Capability embedding

– UI Enhancements – corners, transparency etc.

– From Cookies to Local Storage and SQL capabilities

– Allows offline execution

• Adoption now proceeding full steam ahead
Windows 8 Facebook

Spartan

iOS Web Icons Sencha Touch Hybrid

Current Browsers Score Bonus

Maxthon 3.4.5 » 457 15

Chrome 23 » 448 13

Opera 12.10 » 419 9

Firefox 17 » 392 10

Safari 6.0 » 378 8

Internet Explorer 10 » 320 6

Current TVs Score Bonus

Sharp Aquos » 365 6

Toshiba » 365 6

Sony Internet TV » 357 8

Philips NetTV » 342 16

GoogleTV » 341 8

Toshiba » 325 2

Samsung Smart TV

2012 »
302 12

Panasonic Smart Viera » 240 2

http://html5test.com/compare/browser/maxthon345.html
http://html5test.com/compare/browser/maxthon345.html
http://html5test.com/compare/browser/maxthon345.html
http://html5test.com/compare/browser/chrome23.html
http://html5test.com/compare/browser/chrome23.html
http://html5test.com/compare/browser/chrome23.html
http://html5test.com/compare/browser/opera1210.html
http://html5test.com/compare/browser/opera1210.html
http://html5test.com/compare/browser/opera1210.html
http://html5test.com/compare/browser/ff17.html
http://html5test.com/compare/browser/ff17.html
http://html5test.com/compare/browser/ff17.html
http://html5test.com/compare/browser/safari60.html
http://html5test.com/compare/browser/safari60.html
http://html5test.com/compare/browser/safari60.html
http://html5test.com/compare/browser/ie10.html
http://html5test.com/compare/browser/ie10.html
http://html5test.com/compare/browser/ie10.html
http://html5test.com/compare/browser/sharpaquosespial.html
http://html5test.com/compare/browser/sharpaquosespial.html
http://html5test.com/compare/browser/sharpaquosespial.html
http://html5test.com/compare/browser/toshibaespial.html
http://html5test.com/compare/browser/toshibaespial.html
http://html5test.com/compare/browser/toshibaespial.html
http://html5test.com/compare/browser/sonyitv32.html
http://html5test.com/compare/browser/sonyitv32.html
http://html5test.com/compare/browser/sonyitv32.html
http://html5test.com/compare/browser/philipsnettv.html
http://html5test.com/compare/browser/philipsnettv.html
http://html5test.com/compare/browser/philipsnettv.html
http://html5test.com/compare/browser/googletv.html
http://html5test.com/compare/browser/googletv.html
http://html5test.com/compare/browser/googletv.html
http://html5test.com/compare/browser/toshibanx.html
http://html5test.com/compare/browser/toshibanx.html
http://html5test.com/compare/browser/toshibanx.html
http://html5test.com/compare/browser/samsungsmarttv12.html
http://html5test.com/compare/browser/samsungsmarttv12.html
http://html5test.com/compare/browser/samsungsmarttv12.html
http://html5test.com/compare/browser/samsungsmarttv12.html
http://html5test.com/compare/browser/panasonicviera.html
http://html5test.com/compare/browser/panasonicviera.html
http://html5test.com/compare/browser/panasonicviera.html
http://html5test.com/compare/browser/panasonicviera.html

23 23

Tying it all together (simple version !)

Web-to-Web is easy !

• Get local media and attach to

devices (JavaScript APIs)

• Set up remote connection for

connection to IP addresses

across the world

• Bundle it into an API for

sending to the other guy

• Describing it in SDP

• Finding the other guy (Offer

Answer)

• Presenting the User Experience

OTT

alice bob

Browser

JavaScript

Web

Server

(UX)

Browser

JavaScript

alice bob

24 24

Getting Ugly – the evil NAT monster

Describe the problem with sending
my address

• I don’t know my public address,
only my private one.

• If I can find out my public
address data still needs to flow
out for data to get in

• I may need to result to a media
relay somewhere in the network

• I may have multiple private
addresses (WiFi and Wired),
multiple public addresses (VPN
and OTT) and even multiple
relay servers

• Which addresses do we use to
trade media ?

OTT

alice@somewhere.com alice@nowhere.com

NAT/FW NAT/FW

47.117.23.8 69.12.13.7

192.168.1.1 10.10.3.4

Relay
113.17.16.9:1234

113.17.16.9:1235

25 25

The Solution: ICE (Interactive Connectivity Establishment)

ICE is a collection of approaches

to ensure NAT Traversal in all

cases

• Combination of STUN, TURN

and offer-answer

• Can take a long time to

complete the optimal choice

• Negotiated as part of RTP

stream after SDP exchange

OTT

alice@somewhere.com alice@nowhere.com

NAT/FW NAT/FW

47.117.23.8 69.12.13.7

192.168.1.1 10.10.3.4

Relay
113.17.16.9:1234

113.17.16.9:1235

 Step 1: Allocation – Find out my public addresses – a STUN or TURN Server

 Step 2: Prioritization – Prioritize them, using address type, local preference, and group info

 Step 3: Initiation – encode the candidates (see step 1) into the Offer SDP.

 Step 4: Allocation – find out the public addresses for the Answering party (can be done earlier)

 Step 5: Information – respond with an ANSWER SDP that contains the candidate information

 Step 6: Verification – try every pair in priority order with a media check query/response (media level)

 Step 7: Coordination – controlling party chooses path, and signals completion with a flagged check

 Step 8: Communication – finally ! Media

 Step 9: Confirmation – Adjust for discovery of alternatives at the SIP level with re-invite

26 26

The Solution – ICE Step 6

Describe STUN, TURN, and ICE

(Multiple Charts)

• Step 1: Allocation

• Step 2: Prioritization

• Step 3: Initiation

• Step 4: Allocation

• Step 5: Information

• Step 6: Verification

• Step 7: Coordination

• Step 8: Communication

• Step 9: Confirmation

OTT

alice@somewhere.com alice@nowhere.com

NAT/FW NAT/FW

47.117.23.8 69.12.13.7

192.168.1.1 10.10.3.4

Relay
113.17.16.9:1234

113.17.16.9:1235

5 4

3 2

1

In-band

27 27

Update on SDP Carriage of ICE Candidates

• The SDP Contains “a=“ lines that

are specific to ICE execution

• Final media session addresses are

negotiated as an outcome of the

SDP Offer Answer

•  Media can be delayed after

“answer”

•  provisional candidates may be

involved.

 a=candidate: foundation component-id transport priority connection-address port
cand-type [rel-addr] [rel-port] *(extension-att-name extension-att-value)

• foundation and component identify the stream and RTP / RTCP component of the stream

• Priority is a computed priority as discussed above.

• Candidate type is: host, relay, server or peer reflexive (with root addresses)

 Examples
• a=candidate:1 1 UDP 2130706431 10.0.1.1 8998 typ host
• a=candidate:2 1 UDP 1694498815 192.0.2.3 45664 typ srflx raddr 10.0.1.1 rport 8998

 a=ice-ufrag:<user ID fragment> and a=ice-pwd:<password> are used to pass
credentials for authentication of the streams

OTT

alice bob

Answer

SDP



Offer

SDP



29 29

SDP’s role in DTLS-RTP

1) SDP carries Fingerprint (integrity

protected only S/MIME)

2) DTLS Handshake

• Self signed certificates exchanged

in the media plane avoids the need

for Public Certificates

• DTLS handshake carries public

keys.

• Fingerprint carried in SDP is used

to verify these.

• The fingerprint binds the DTLS key

exchange in the media plane to the

signalling plane.

• The secured and verified DTLS

exchange is used in creating the

SRTP Stream

3) SRTP Media

• DTLS-SRTP is seen by the Internet community as more desirable given the

untrusted control plane environment, while building on established

functionality of TLS and SRTP

• DTLS-SRTP is currently mandatory in WebRTC.

30 30

SIP INVITE with DTLS-SRTP information

Invite from Alice to Bob

INVITE sip:bob@example.com SIP/2.0

To: <sip:bob@example.com>

From: "Alice"<sip:alice@example.com>;tag=843c7b0b

Via: SIP/2.0/TLS ua1.example.com;branch=z9hG4bK-0e53sadfkasldkfj

Contact: <sip:alice@ua1.example.com>

Call-ID: 6076913b1c39c212@REVMTEpG

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE

Max-Forwards: 70

Content-Type: application/sdp

Content-Length: xxxx

Supported: from-change

v=0

o=- 1181923068 1181923196 IN IP4 ua1.example.com

s=example1

c=IN IP4 ua1.example.com

a=setup:actpass

a=fingerprint: SHA-1 \

4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB

t=0 0

m=audio 6056 RTP/AVP 0

a=sendrecv

a=tcap:1 UDP/TLS/RTP/SAVP RTP/AVP

a=pcfg:1 t=1

Fingerprint, used to verify certificate receive in user

plane DTLS handshake

Transport protocol options:

• UDP/TLS/RTP/SAVP = SRTP-DTLS,

• RTP/AVP = RTP

Indicated preference for SRTP-

DTLS configuration

 SDP Capabilities Negotiation (RFC 5939)

 adds alternatives to “m=“ line,

• with indicated preferences,

• in a backwards compatible way

31 31

Sending Raw Data – Collaboration, Files, etc.

• Multi-media would not be the same without the ability to exchange

anything and everything

• DataChannel API allows the creation of a stream of anything

– Strings, Array of characters, or just a binary blob

• DataChannel API – Raw Data Exchange between webRTC Peers
– attributes:

attribute label;

attribute reliable;

attribute readyState;

attribute bufferedAmount;

attribute onopen;

attribute onerror;

attribute onclose;

– close ();
attribute onmessage;

attribute binaryType;

– send (string, arraybuffer or blob);

Actions on events

Characteristics of the Channel

Actually doing something

32 32

Tying it all together (the real OTT version)

• The real OTT Version is really
just a NAT friendly version of the
basic interaction

• ICE is used for NAT Traversal
– Slower media setup

– High inherent complexity

– 100% effective

• Security is provided via DTLS-
SRTP

• The DataChannel API permits
exchange of arbitrary data

– Used for other collaboration
functions like screen share and P2P
file transfer

OTT

alice bob

NAT/FW NAT/FW

47.117.23.8 69.12.13.7

192.168.1.1 10.10.3.4

Relay
113.17.16.9:1234

113.17.16.9:1235

33 33

What about Carrier involvement?

The carrier network must….

• Look like a webRTC Endpoint to
All Browsers

– What are the other webRTC
Compliance attributes ?

• Conform to RCS communication
application behavior for all
Phones.

• Find a way to federate
addressing for radically different
domains*

• Compensate for different session
and application models*

OTT

alice@somewhere.com 987-6543@carrier.com

Carrier

* Snooze check - Don’t let yourself be fooled

34 34

OTT

alice@somewhere.com 987-6543@carrier.com

Carrier

ICE Lite

• ICE Lite does the ICE on behalf

of the Telephone

• Performed by the edge of the

Carrier Network

• Capable of querying the address

candidates offered by the OTT

• Capable of responding to the

queries of the OTT client

• Not allowed to declare itself the

controller in the ICE choice

process

NAT/FW

47.117.23.8

192.168.1.1

webRTC GW

1

3

2

35 35

All in One Bucket – Media Muxing

• Multiple media streams and the

use of ICE don’t mix

– Added delay

– Added complexity

• The webRTC solution is to

multiplex media into a single RTP

Stream

– Includes multiplexing RTCP

• Multiple mechanisms are under

evaluation at this time

– Grouping Sources [RFC 5888], or

– Directly extending the SDP

• Non-multiplexed RTP is also

required for interaction with

legacy systems

OTT

alice@somewhere.com 987-6543@carrier.com

Carrier

webRTC GW

36 36

Codecs

• webRTC mandates different

codecs

• Prime considerations:

– High performance in high packet loss

environment

– Superior user experience available

– lack of licensing encumbrances

• Audio Codec requirements:

– OPUS

– G.711 A-law and Mu-law

• Still a battle in standards over

mandatory video codecs

– VP8 and H.264 are the choices

– Lack of a rule  no rules

– No rules  we must transcode on an

on-demand basis

OTT Carrier

webRTC GW

37 37

Back to our good Friend SDP

OTT

alice@somewhere.com 987-6543@carrier.com

Carrier

Answer

SDP



Offer

SDP



v=0

o=genbanduser 2890844526 2890844526 IN IP4 gcfw.genband.com

s=-

c=IN IP4 64.129.37.225

t=0 0

a=ice-lite

a=group BUNDLE 1 2

m=audio 49178 RTP/SAVPF 99

a=rtpmap:99 opus/48000

a=mid:1

a=ssrc:43218 cname Hg6J8iKgrfdtLihs

a=ssrc 43218 msid:jeorhfds

a=ssrc: information: microphone

a=rtcp-mux

m=video 49178 RTP/SAVPF 98

a=rtpmap:98 VP8 90000

a-mid:2

a=ssrc:39322 cname:dkSK9dqork7fJwf3

a=ssrc:39322 msid:sldfiedf

a=ssrc:39322 information front camera

a=ssrc:93847 cname:sdi7FeW3jse2jHdw

a=ssrc:93847 msid:sldfiedf

a=ssrc:93847 information: back camera

a=ssrc:17339 cname:ruoWe35GfqowlaDf

a=ssrc:17339 msid:sldfiedf

a=ssrc:17339 information:presentation

a=rtcp-mux

a=candidate:1 1 UDP 2130706431 172.18.57.42 8998 typ host

a=candidate:2 1 UDP 1694498815 64.129.37.225 45664 typ srflx raddr 172.18.57.42 rport 8998

a=ice-ufrag:mckafred

a=ice-pwd:kashhfuds

Bundle the next two media lines

Media group media id

Describes the stream

RTCP will be multiplexed in

RTCP will be multiplexed in All part of the same stream

3 separate video streams

ICE candidate addresses and

credentials

• Add in changes to cover Channel
Muxing, ice lite, and SRTP Key
Exchange.

• a=ice-lite for the gateway ICE

• a=group BUNDLE for muxing
RTP

• a=rtcp-mux for muxing in the
RTCP traffic

webRTC GW

38 38

Back to the topic of Sessions

1. Distributed App Servers and

some global addressing

resolution

2. All communicators share an

app server (call server?)

– No geographic ties

3. Browser logic and some

global addressing resolution

Browser

JavaScript

Web Server

and Appl Bus

logic

webRTC

compliant

media

Session

Signaling

Browser

JavaScript

Web

Server

(UX)

webRTC

compliant

media

Browser

JavaScript

Application Bus logic – All parties use the

same App Server

webRTC

compliant

media

Session

Signaling

2.

1. 3.

The unanswered question in webRTC:

How is the session managed ?

How is the SDP Carried ?

39 39

SIP (no need for details in this audience)

F1 INVITE Alice -> atlanta.com proxy

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

• Comprehensive

• Well practiced at Offer /

Answer

• Aligns well with existing

communications networks

• Proven capabilities

40 40

REpresentational State Transfer (REST)

REST is an approach or technique, NOT a specification or protocol

Each URL addresses a Resource and each API call modifies the state of

that resource.

POST /phonebook HTTP/1.1

Host: www.example.com

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 299

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body pb="http://www.example.com/phonebook">

 <pb:GetUserDetails>

 <pb:UserID>12345</pb:UserID>

 </pb:GetUserDetails>

 </soap:Body>

</soap:Envelope>

GET http://www.example.com/phonebook/UserDetails/12345 HTTP/1.1

• Not a Standard

• Integrates well with web

environments

• Easily specialized

• Familiar tool of a large

development community

• Simple

• Not inherently Peer to Peer

41 41

XMPP / Jingle

<iq from='juliet@capulet.lit/balcony'

 id='rc61n59s'

 to='romeo@montague.lit/orchard'

 type='set'>

 <jingle xmlns='urn:xmpp:jingle:1'

 action='session-accept'

 responder='juliet@capulet.lit/balcony'

 sid='a73sjjvkla37jfea'>

 <content creator='initiator' name='this-is-a-stub'>

 <description xmlns='urn:xmpp:jingle:apps:stub:0'/>

 <transport xmlns='urn:xmpp:jingle:transports:stub:0'/>

 </content>

 </jingle>

</iq>

• In common use in OTT

environments

• Aligns with webRTC choices

like ICE

• Established Open Source

assets

42 42

HTTP vs. webSockets

HTTP

webSockets

HTTP assumes that everything is a client request

webSockets assumes that everything is interactive

• Reuses HTTP ports to enable NAT / Firewall

interaction

• Dramatically reduced payload to reduce overhead

• Use of TCP for web session management

44 44

Tying it all together (Carrier version)

• Isolation at both the Media and

Signaling layer

• SIP Compliance on one side,

flexibility on the other

• Full compliance to a webRTC

media path facing the OTT

– Codec diversity

– ICE NAT Traversal

– SRTP

– Media Muxing

– Etc…

• Full compliance to a regulated

SIP environment in the Carrier

– Legal Intercept

– Dial Plan and addressing

– IMS Data and Authentication model

OTT

alice@somewhere.com 987-6543@carrier.com

Carrier

OTT GW

The chaos of freedom interworked

with the complexity of years of experience

45 45

A difference of Perspective

 Session

– SIP Compliant

– Voice, Video, Chat, Video

– Full Telephony State

– Regulatory compliance

– Universal rigid addressing

– Session based

 Application

– Common

– Universal

– Consistent

– telephony

 Session

– No a-priori rules

– Voice, Video, Chat, Screen-share,

Pictures, co-browse, …

– Community model addressing

– Unregulated

– Often conference based

 Application

– No Rules

– Specialized subsets, and

integrated communications

– Different models (wall, timeline,

tweet ,,,)

OTT Carrier

46 46

A mature solution ?

• Standards Completion

• Uniform Adoption

• QoS Assurance

• ICE and “post dial delay”

• Optimal codecs for diverse networks

• Inter-domain communication

– Addressing

– Application Models

• etc.

References

48 48

Additional WebRTC resources

 WebRTC

– IETF rtcweb working group charter: http://datatracker.ietf.org/wg/rtcweb/charter/

– W3C Real Time Communications wiki: http://www.w3.org/2011/04/webrtc/wiki/Main_Page

– Web RTC Security: https://wiki.mozilla.org/Security/Discussions/WebRTC

– Web RTC Open Source Project: http://www.webrtc.org/

– Web RTC blog: http://bloggeek.me

 WebRTC examples

– Vidtel WebRTC Video Conferencing http://youtu.be/99QbZmA4XNc

– Drum - real-time web meeting solution with an integrated audio conferencing capability

http://thisisdrum.com

– Twelephone - HTML5 WebRTC browser-based voice and video telephone

http://www.youtube.com/watch?v=I-2FKvItckQ&feature=player_embedded

– Zingaya - one-click web call service http://blog.zingaya.com/2012/11/26/zingaya’s-one-click-

web-call-service-powered-by-webrtc-is-now-live/

– Voxeo Labs and Solaiemes Bring WebRTC Video Calls to Existing Mobile Numbers -

http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-

mobile-numbers/

http://datatracker.ietf.org/wg/rtcweb/charter/
http://www.w3.org/2011/04/webrtc/wiki/Main_Page
https://wiki.mozilla.org/Security/Discussions/WebRTC
http://www.webrtc.org/
http://bloggeek.me
http://bloggeek.me
http://youtu.be/99QbZmA4XNc
http://youtu.be/99QbZmA4XNc
http://thisisdrum.com
http://thisisdrum.com
http://www.youtube.com/watch?v=I-2FKvItckQ&feature=player_embedded
http://www.youtube.com/watch?v=I-2FKvItckQ&feature=player_embedded
http://www.youtube.com/watch?v=I-2FKvItckQ&feature=player_embedded
http://www.youtube.com/watch?v=I-2FKvItckQ&feature=player_embedded
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://blog.zingaya.com/2012/11/26/zingaya%E2%80%99s-one-click-web-call-service-powered-by-webrtc-is-now-live/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/
http://voxeolabs.com/2012/11/voxeo-labs-and-solaiemes-bring-webrtc-video-calls-to-existing-mobile-numbers/

49 49

References

RFC 2327 SDP: Session Description Protocol http://www.ietf.org/rfc/rfc2327.txt

RFC 3264 An Offer/Answer Model with SDP http://www.ietf.org/rfc/rfc3264.txt

RFC 768 User Datagram Protocol http://www.ietf.org/rfc/rfc768.txt

RFC 3550 RTP: A Transport Protocol for Real-Time Applications http://www.ietf.org/rfc/rfc3550.txt

RFC 5245 Interactive Connectivity Establishment (ICE): http://tools.ietf.org/html/rfc5245

RFC 6455 The WebSocket Protocol http://tools.ietf.org/html/rfc6455

draft-ietf-rtcweb-audio http://tools.ietf.org/wg/rtcweb/draft-ietf-rtcweb-audio/

draft-ietf-rtcweb-data-channel http://tools.ietf.org/wg/rtcweb/draft-ietf-rtcweb-data-channel/

draft-ietf-rtcweb-jsep http://tools.ietf.org/wg/rtcweb/draft-ietf-rtcweb-jsep/

draft-ietf-rtcweb-overview http://tools.ietf.org/wg/rtcweb/draft-ietf-rtcweb-overview/

draft-ietf-rtcweb-qos http://tools.ietf.org/wg/rtcweb/draft-ietf-rtcweb-qos/

draft-ietf-rtcweb-rtp-usage http://tools.ietf.org/html/draft-ietf-rtcweb-rtp-usage-05

draft-ietf-rtcweb-security-arch http://tools.ietf.org/wg/rtcweb/draft-ietf-rtcweb-security-arch/

draft-ietf-rtcweb-use-cases-and-requirements

http://tools.ietf.org/wg/rtcweb/draft-ietf-rtcweb-use-cases-and-

requirements/

Real-time Communication Between Browsers http://dev.w3.org/2011/webrtc/editor/webrtc.html

Media Capture and Streams http://dev.w3.org/2011/webrtc/editor/getusermedia.html

IETF RTCWEB Drafts

IETF RFCs

W3C webRTC Documents

And a good book on the topic:

WebRTC: APIs and RTCWEB Protocols of the HTML5 Real-Time Web

Alan B. Johnston and Daniel C Burnett

http://webrtcbook.com/

